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Abstract. In this paper, we will propose algorithms for calculating a minimal ellipsoid
circumscribing a polytope defined by a system of linear inequalities. If we know all vertices
of the polytope and its cardinality is not very large, we can solve the problem in an efficient
manner by a number of existent algorithms. However, when the polytope is defined by lin-
ear inequalities, these algorithms may not work since the cardinality of vertices may be huge.
Based on a fact that vertices determining an ellipsoid are only a fraction of these vertices, we
propose algorithms which iteratively calculate an ellipsoid which covers a subset of vertices.
Numerical experiment shows that these algorithms perform well for polytopes of dimension
up to seven.
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1. Introduction

This paper is concerned with algorithms for calculating a minimal ellip-
soid circumscribing a polytope in a low dimensional Euclidean space. Cal-
culation of a minimal sphere circumscribing a polytope has been studied
by many authors. In particular, if we know all extreme points of a poly-
tope and if its cardinality is not excessively large, then the problem can
be solved efficiently by a number of algorithms. Among such algorithms
are those of Elzinga and Hearn [4], Dyer [3], Skyum [17], Sekitani and
Yamamoto [16] and others.

On the other hand, if a polytope is defined by a linear system of inequal-
ities, the problem is NP complete. When the dimension of the underlying
space is small, say less than 5 or 6, then the algorithm proposed by Konno
et al. [11] can solve the problem in a reasonably efficient manner.

The problem to be discussed in this paper, namely that of calculating a
minimal ellipsoid circumscribing a polytope, is a direct extension of a min-
imal sphere problem. When a polytope is defined by a set of finitely many
points, the minimal ellipsoid can be calculated by algorithm of Barnes [1]
based on quadratic programming approach and those by Khachiyan and
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Todd [9], Sun and Freund [18], Zhang [21], Zhang and Gao [22] using inte-
rior point algorithms. These can generate a minimal ellipsoid in an efficient
way when the cardinality of the point set is relatively small. Also, there
are stochastic algorithms by Welzl [20], Gärtner and Schönherr [7] and
others.

However, when the polytope X⊂IRn is defined by a set of linear inequal-
ities, there exists no practical algorithm since a polytope may contain a
huge number of extreme points.

According to a well-known theorem by John [8], the minimal ellipsoid
containing a polytope X is determined by a subset of at most n(n+ 3)/2
points. Hence, we do not have to identify all extreme points.

The algorithm to be proposed in this paper is to generate a sequence of
ellipsoids containing a number of extreme points of X and update it by
adjoining a new point not contained in it by solving a nonconvex quadratic
programming problem.

In Section 2, we will give a mathematical representation of the problem,
and propose a basic scheme to generate its ε-optimal solution of it. Sec-
tion 3 will be devoted to a branch and bound algorithm for maximizing a
convex quadratic programming problem to find a point not contained in a
given ellipsoid. Also, we will propose several schemes to enhance the effi-
ciency of this algorithm.

In Section 4, we present the results of numerical experiments using sam-
ple problems in up to seven dimensional space. We will conclude the paper
by adding some remarks and possible extensions.

2. Minimal Ellipsoid Circumscribing a Polytope

An ellipsoid in n-dimensional Euclidean space IRn is defined by

E(D, c) :={ x ∈ IRn | (x− c)�D(x− c) � 1 },
where D is a symmetric positive definite matrix and c ∈ IRn is the center
of the ellipsoid. It is well known (e.g. [2]) that the volume of an ellipsoid
E(D, c) is proportional to (det D)−1/2.

Let us consider a polytope

X :={ x ∈ IRn | Ax � b },
where A∈ IRm×n, b∈ IRm and assume throughout

ASSUMPTION 1. X is nonempty, bounded with an interior.

Then the minimal volume ellipsoid containing X can be obtained by
solving the following optimization problem:
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minimize
D, c

det
(
D−1/2)

(MECAP) subject to (x− c)�D(x− c) � 1, ∀x ∈X,

D�O, c∈ IRn,

where D�O denotes that D is positive definite.
The problem (MECAP) can be represented as follows:

minimize
D, c

det
(
D−

1
2

)

(MECAP′) subject to max
x∈X

{
(x− c)�D(x− c)

}
� 1,

D�O, c∈ IRn.

For a fixed positive definite matrix D, the function q(x) := (x−c)�D(x−c)

is convex, so that the problem can be rewritten as follows:

minimize
D, c

det
(
D−1/2)

(MEC(VX )) subject to (v− c)�D(v− c) � 1, ∀v∈VX,

D�O, c∈ IRn,

where VX is the set of vertices of X.
A minimal ellipsoid containing X can be obtained by existent algorithms,

e.g., [1,18,20], if we know all extreme points vj , j = 1, . . . , l′. However, l′

can be very large even for small n, so that it may not be easy to solve
(MEC(VX)) by these algorithms.

The algorithm to be proposed below is based upon a sequence of con-
cave minimization subproblems applied to a branch and bound algorithm
[6,14].

At the (k + 1)-st iteration, we are given the set Vk of k + k0 distinct
extreme points vj , j =1,2, ..., k+k0. Also, let

E(Dk, ck) :={
x ∈ IRn

∣∣ (x− ck)�Dk(x− ck) � 1
}

be the smallest ellipsoid containing vj ’s, which can be calculated by one of
the algorithms such as DRN algorithm of Sun and Freund [18].

Let us consider the following quadratic programming problem:

(NCQP(Dk, ck))
maximize

x ∈ IRn
(x− ck)�Dk(x− ck),

subject to x ∈X.

Since X is bounded, the problem has an optimal solution vk, which is an
extreme point of X. If

(vk− ck)�Dk(vk− ck) � 1, (1)

then E(Dk, ck) is obviously a smallest ellipsoid circumscribing X. If, on the
other hand, the inequality (1) is not satisfied, then let
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V k+1←V k ∪{vk},
and continue the process.

Basic Algorithm (ALGORITHM 1). Let ε >0 be a tolerance.

Step 1. Let V 0 = {
v1, . . . ,vk0

}
be a set of vertices of X whose affine hull

spans IRn, and set k←1.
Step 2. Calculate the smallest ellipsoid E(Dk, ck) covering V k by solving

(MEC(V k)).
Step 3. Calculate vk by solving problem:

(NCQP(Dk, ck))
maximize

x∈IRn
(x− ck)�Dk(x− ck),

subject to x ∈X.

If (vk − ck)�Dk(vk − ck) � 1+ ε, then end. Else set V k+1← V k ∪
{vk}, k←k+1 and go to Step 2.

THEOREM 1. Algorithm 1 terminates in finitely many steps generating a
smallest ellipsoid containing X.

Proof. The vertex vk is distinct from those in V k−1. The number of
vertices of X is finite and the result follows.

For calculating a minimal ellipsoid in Step 2, a number of algorithms
are available. We will use an interior point algorithm proposed by Sun
and Freund [18] which is considered to be one of the most efficient
deterministic algorithms.

3. Branch and Bound Algorithm and Shortcut Strategy

Let us now turn to the algorithm for solving a convex maximization prob-
lem (NCQP(D, c)) of Section 2. This is admittedly a very difficult global
optimization problem. However, when the dimensionality of the underly-
ing space is small, then the problem can be solved in an efficient way by a
branch and bound algorithm [14].

Let us first define a new set of variables y=P�x, where P is an orthonor-
mal matrix such that P�DP =diag [λ], where λ>0 is the vector of eigenvalues
of D. The problem (NCQP(D, c)) is reduced to the convex maximization prob-
lem with separable quadratic objective function. Let us define

maximize
y∈IRn

f (y) :=
n∑

j=1

λj y2
j −2 c�P diag{λ}y+ c�Dc,

subject to APy � b,

where λj >0, ∀j . Let
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fj (yj ) := λj y2
j −2 [c�P diag[λ]]j yj , j =1, ..., n, and

Y := { y ∈ IRn | APy � b },
and let

R0 :={ y ∈ IRn | L0 � y � U 0 }
be the smallest hyperrectangle containing Y .
Let us define

(P0)
maximize

y∈IRn
f (y) :=

n∑

j=1

fj (yj ),

subject to y ∈Y ∩R0.

We will apply a branch and bound algorithm successfully applied to a
number of portfolio optimization problems [12,13].

Rectangular Subdivision Branch and Bound Algorithm. Let ε > 0 be a
tolerance.

Step 1 (Initialization). Solve a linear programming problem:

maximize
y∈IRn

g0(y) :=
n∑

j=1

g0
j (yj ),

subject to y ∈Y ∩R0,

where g0
j (yj )= fj (U

0
j )−fj (L

0
j )

U 0
j−L0

j

yj + U 0
j fj (L

0
j )−L0

j fj (U
0
j )

U 0
j−L0

j

, j = 1, ..., n, and let

y0 be its optimal solution and β(R0) be its optimal value. Set P←
{R0}, α0←f (y0), y0←y0, and k←0.

Step 2 (Pruning). Delete all regions R∈P such that β(R) � αk+ ε. If P=
φ, terminate: x̂ :=Pyk is an ε-optimal solution to (NCQP(D, c)).

Step 3 (Branching). Select a region Rk ∈P such that

β(Rk)=max {β(R) | R∈P } ,
and let

s←arg max
j

{
gj (y

k
j )−fj (y

k
j )

}
.

For s, divide the region Rk into the following two regions:

Rk1←
{
y |y ∈Rk, ys � yk

s

}=:
{
y |Lk1 � y � U k1

}
,

Rk2←
{
y |y ∈Rk, ys � yk

s

}=:
{
y |Lk2 � y � U k2

}
.

Solve two linear programming problems

maximize
y

gk1(y) :=
n∑

j=1
g

k1
j (yj ),

subject to y ∈Y ∩Rk1,

maximize
y

gk2(y) :=
n∑

j=1
g

k2
j (yj ),

subject to y ∈Y ∩Rk2,
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where gh
j (yj )= fj (U

h
j )−fj (L

h
j )

Uh
j −Lh

j

yj + Uh
j fj (L

h
j )−Lh

j fj (U
h
j )

Uh
j −Lh

j

, j =1, ..., n, for rect-

angle Rh={ y ∈ IRn | Lh � y � Uh }, h= k1, k2, and let yk1
, yk2

be
their optimal solutions, and set β(Rk1)←gk1(yk1

), β(Rk2)←gk2(yk2
).

Also, let

yk+1←arg max
{

f (yk), f (yk1
), f (yk2

)
}
.

Set αk+1← f (yk+1), P← (P \Rk)∪ {Rk1,Rk2}, k← k+ 1, and goto
Step 2.

THEOREM 2. yk converges to an ε-optimal solution of (P0) as k→∞.
Proof. See [14,19].

3.1. shortcut strategy

Maximization of a convex quadratic function is usually very time-consuming.
However, we do not have to find an optimal solution of the subproblem
at each iteration of the branch and bound algorithm. What we need is an
extreme point of X which is not contained in the current ellipsoid. Thus we
will modify Algorithm 1 as follows.

Algorithm with Shortcut Strategy (ALGORITHM 2). Let ε>0 be a tolerance.

Step 1. Let V 0 = {
v1, ...,vk0

}
be a set of vertices of X whose affine hull

spans IRn, and set k←1.
Step 2. Calculate the smallest ellipsoid E(Dk, ck) covering V k by solving

(MEC(V k)).
Step 3. Apply the branch and bound algorithm to the problem

(NCQP(Dk , ck )) maximize
x ∈ IRn

(x− ck)�Dk(x− ck),

subject to x ∈X.

If any point vk satisfying (vk − ck)�Dk(vk − ck) > 1+ ε is found,
then abort the branch and bound procedure and set V k+1←V k ∪
{vk}, k←k+1 and go to Step 2. Else end with an ε-optimal solu-
tion (Dk, ck).

Note that points obtained in Step 3 are not necessarily vertices. In prac-
tice, almost all these points are expected to be vertices of X.

In addition to the above enhancing scheme, at each application of Step 3
of Algorithms 1 and 2, the initial incumbent value of the branch and
bound procedure may be replaced by the larger value of some point
obtained by then.
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Figure 1. Illustration of polytope generation schemes.

4. Computational Experiments

In this section, we will present numerical results of the Algorithm 2 and
compare it with the benchmark algorithm defined below.

Benchmark (ALGORITHM 3): Combination of Vertex Enumeration and
Minimal Covering Ellipsoid Calculation

Step 1. Enumerate all vertices of X.
Step 2. Calculate a minimal ellipsoid by DRN algorithm which is devel-

oped in [18].

Among a number of vertex enumeration algorithms, we use here the algo-
rithm cddf+ of Fukuda [5].

We will test the algorithms using two different types of polytopes. The
first type of polytope X1 is defined as the intersection of an n-dimensional
hypercube [0,5]n and m−2n linear inequalities supporting a sphere S={x∈
IRn | ‖x− c‖ � 2}, where c= (2.5, . . . ,2.5)� ∈ IRn (see Figure 1(a)). The sec-
ond type of polytope X2 is the multi-knapsack type polytope: X2 = {x ∈
IRn|Mx � 1,x � 0}, where M ∈ IR(m−n)×n is a matirix whose components
are in (0,10) (see Figure 1(b)).

Intuitively, X1 is expected to contain much more vertices than X2 when
m and n are fixed. Moreover, vertices of X2 are expected to be scattered
uniformly around the sphere, and consequently, many vertices are expected
to support the optimal ellipsoid. On the other hand, X2 is expected to have
less vertices, so that the associated problem is easier.

Polytopes generated by these schemes satisfy Assumption 1 and expected
to contain a large number of extreme points. We generated X1 for m up to
500 and n up to 7 while X2 for n=7 only.
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Table 1. Average number of vertices of generated problems for X1

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 184.0 547.3 1927.2 6800.8 23344.8
(0.0) (12.6) (32.6) (115.9) (352.9)

200 384.0 1165.5 4429.6 16904.1 74096.1
(0.0) (9.6) (69.8) (3866.8) (2453.2)

300 584.0 1787.0 6764.6 30429.2 –
(0.0) (14.0) (721.3) (497.6) ( – )

500 983.6 3080.3 12161.6 54160.7 –
(1.2) (12.3) (101.8) (4268.9) ( – )

Table 2. Average CPU time of Algorithm 3 for X1 (sec)

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 0.07 1.29 49.55 5746.93 –
(0.01) (0.12) (5.33) (958.55) ( – )

200 0.56 10.09 583.26 – –
(0.07) (0.85) (52.43) ( – ) ( – )

300 1.91 36.30 5448.32 – –
(0.31) (2.57) (1617.17) ( – ) ( – )

500 7.89 183.31 – – –
(1.26) (20.92) ( – ) ( – ) ( – )

Results for Polytope X1. Table 1 shows the average number of vertices of
10 polytopes X1 which are randomly generated by the scheme above while
the numbers in brackets are standard deviation. We see that the number of
vertices explodes as n increases.

We applied Algorithms 1 and 2 using C/C++ on a personal computer
with CPU: Pentium 4 processor (2.53 GHz), memory: 512 MB. We used
CPLEX7.1 for solving linear programming problems. The DRN algorithm
proposed by Sun and Freund [18] is used to calculate a minimal ellipsoid
covering a given set of points, and we used CLAPACK for computation of
linear algebra in the interior point algorithm. We chose εfeas= εopt= 10−7

for DRN algorithm and ε=10−5 for the Algorithms 1 and 2.
Tables 2–4 show CPU time of Benchmark algorithm, Algorithms 1 and 2,

respectively, applied to the problems of Table 1.
We see that the Benchmark algorithm can solve problem up to (n,m)=

(3,200) very fast. However, when (n,m) is over (4,200) and (3,200) it is
much slower than Algorithms 1 and 2. This is due to the reason that DRN
algorithm becomes less efficient when the number of vertices is large. Also,
we see that the Algorithm 2 is superior to Algorithm 1.
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Table 3. Average CPU time of Algorithm 1 for X1 (sec)

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 0.66 3.82 30.81 244.84 2628.80
(0.22) (0.80) (8.55) (59.89) (753.50)

200 1.97 8.65 87.81 812.87 10649.49
(0.36) (1.89) (11.48) (137.77) (2884.90)

300 3.73 16.42 133.37 1769.05 18875.53
(0.91) (5.54) (18.94) (308.64) (4578.64)

500 10.27 41.38 242.86 2808.67 31309.43
(2.64) (13.05) (40.67) (563.10) (5421.97)

Table 4. Average CPU time of Algorithm 2 for X1 (sec)

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 0.20 1.01 6.34 46.58 502.99
(0.05) (0.17) (1.00) (13.01) (211.93)

200 0.65 2.40 16.94 139.86 1423.48
(0.16) (0.39) (2.89) (37.87) (564.78)

300 1.06 4.44 25.43 254.30 3076.94
(0.25) (1.41) (5.82) (100.50) (1488.94)

500 2.79 10.76 61.27 501.80 4684.11
(0.76) (3.24) (15.11) (146.95) (929.94)

Table 5 shows the CPU time for enumerating vertices in Benchmark
algorithm for X1.

We see that the vertex enumeration algorithm cddf+ is very efficient. In
fact, it shares only a fraction of the total computation time.

Finally, Tables 6 and 7 show the number of iterations of Algorithms 1
and 2 for X1.

Table 5. Average CPU time for vertex enumeration of X1 (sec)

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 0.01 0.03 0.19 3.74 60.47
(0.00) (0.00) (0.01) (0.22) (2.87)

200 0.03 0.14 1.83 48.46 962.61
(0.00) (0.01) (0.09) (15.45) (72.87)

300 0.06 0.32 7.43 197.49 –
(0.00) (0.01) (1.67) (22.91) ( – )

500 0.16 1.26 39.14 804.40 –
(0.00) (0.05) (0.57) (136.49) ( – )
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Table 6. Average number of Iterations of Algorithm 1 for X1

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 8.70 14.70 25.10 35.30 45.90
(2.15) (1.62) (3.78) (4.38) (4.21)

200 9.80 13.40 26.00 39.60 51.70
(1.17) (1.96) (1.79) (2.62) (5.42)

300 10.60 14.00 24.70 42.80 53.70
(1.50) (3.16) (1.90) (4.87) (2.97)

500 11.30 15.10 24.60 40.60 54.80
(1.55) (3.53) (2.24) (4.18) (3.31)

Table 7. Average Number of Iterations of Algorithm 2 for X1

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 11.90 33.30 66.60 111.30 171.70
(3.67) (6.56) (9.76) (10.46) (17.38)

200 17.20 29.60 74.70 137.80 222.50
(2.79) (5.48) (8.21) (15.26) (16.26)

300 19.70 28.00 73.00 157.50 229.70
(5.39) (9.02) (7.78) (12.85) (18.83)

500 25.70 35.70 65.50 151.00 259.00
(5.97) (8.98) (6.77) (17.82) (18.91)

We see that the number of iterations of Algorithm 2 is twice or three
times more than those of Algorithm 1. However, the total computation
time is 5–10 times less than Algorithm 1. This proves our conjecture that
terminating the branch and bound algorithm as soon as we obtain a new
point not contained in the current ellipsoid enhances the overall efficiency
of the algorithm, as expected.

Tables 8 and 9 show the average number of points in polytope X1 gener-
ated until ε-optimality is attained. Almost all of these points are thought to
be vertices of X1. (Accidentally, the value of each cell is equal to the num-
ber of iterations shown in Tables 6 and 7, respectively, plus 2n which is the
number of problems solved for obtaining the first rectangle at each branch
and bound algorithm). The last row of each table shows the John number,
i.e., n(n+ 3)/2, mentioned in Section 1, indicating that only a fraction of
vertices of a polytope are to be required to determine ellipsoids. From these
two tables and Table 1, we see that Algorithms 1 and 2 succeeded in iden-
tifying a set of vertices which determines minimal ellipsoid.

Finally, let us mention the effect of the technique explained in the end
of Section 3 for improving the first incumbent value of each branch and
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Table 8. Average number of points gathered until optimality by
Algorithm 1 for X1

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 14.70 22.70 35.10 47.30 59.90
(2.15) (1.62) (3.78) (4.38) (4.21)

200 15.80 21.40 36.00 51.60 65.70
(1.17) (1.96) (1.79) (2.62) (5.42)

300 16.60 22.00 34.70 54.80 67.70
(1.50) (3.16) (1.90) (4.87) (2.97)

500 17.30 23.10 34.60 52.60 68.80
(1.55) (3.53) (2.24) (4.18) (3.31)

F.J. number 9 14 20 27 35

Table 9. Average number of points gathered until optimality with
algorithm 2 for X1

Number of linear n: Number of dimensions
inequalities (m) 3 4 5 6 7

100 17.90 41.30 76.60 123.30 185.70
(3.67) (6.56) (9.76) (10.46) (17.38)

200 23.20 37.60 84.70 149.80 236.50
(2.79) (5.48) (8.21) (15.26) (16.26)

300 25.70 36.00 83.00 169.50 243.70
(5.39) (9.02) (7.78) (12.85) (18.83)

500 31.70 43.70 75.50 163.00 273.00
(5.97) (8.98) (6.77) (17.82) (18.91)

F.J. number 9 14 20 27 35

bound phase. The incumbent value was improved at 70–90% iterations of
the experiments, and we observe that its percentage of all increases as n

and m become larger. For example, by Algorithm 2, 70.6% iterations were
improved when (n,m)= (3,300), while 92.0% when (n,m)= (7,500).

Results for Polytope X1. Tables 10–12 summarize the numerical results
for polytopes X2 using Algorithm 2. Each table shows the average and the
standard deviation of 10 randomly generated instances.

Table 10 shows the average number of vertices of generated polytopes
X2. Compared with Table 1, the average number of vertices is about one
tenth of that of X1’s when the number m of constraints is the same. This
fact supports our expectation.

Tables 11 and 12 show the average CPU time and the number of itera-
tions, respectively, of Algorithm 2 for solving the instances of X2, which are
comparable to Tables 4 and 7 for X1. We see from these tables that both
the elapsed times and the number of iterations are remarkably smaller com-
pared with X1. This implies that the algorithm succeeded to gather a set of



12 J.-Y. GOTOH AND H. KONNO

Table 10. Average number of Vertices of Polytope X2

m: Number of constraints

100 200 300 500

av. 2445.6 4107.2 6030.2 8697.0
s.d. (747.3) (1213.8) (1629.2) (2338.7)

Table 11. Average CPU time with
Algorithm2 (for X2)

m: Number of constraints

100 200 300 500

av. 0.95 1.48 2.05 3.38
s.d. (0.45) (0.59) (0.27) (1.17)

Table 12. Average number of itrations
with Algorithm 2 (for X2)

m: Number of constraints

100 200 300 500

av. 2.1 1.4 1.3 1.3
s.d. (1.87) (1.20) (0.64) (0.90)

vertices which are critical to support the minimal ellipsoid at the first stage.
In addition, we guess that the distribution of vertices affected the bounding
step of the branch and bound algorithm.

From this simple comparison, we expect that the algorithm proposed in
this paper performs better for polytopes with a special strucutre.

5. Concluding Remarks

We proposed an algorithm for finding a minimal volume ellipsoid contain-
ing a polytope defined by a linear system of inequalities. When the dimen-
sion of the polytope and the number of inequalities are small, then we can
generate a minimal ellipsoid by first enumerating extreme points and then
apply existent algorithm such as the one proposed by Sun and Freund [18].
However, when the size of problem is larger, this method tends to become
less efficient for those polytopes with a huge number of extreme points
such as X1.

On the other hand, the branch and bound algorithm proposed in
this paper can solve problems of dimension up to 7 and the number of
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inequalities m up to 500 within a practical amount of time. This algorithm
is based on the observation that

(i) minimal ellipsoid is determined by at most n(n+3)/2 points,
(ii) convex quadratic function can be maximized over a polytope by a

branch and bound algorithm if the dimension n is less than 10.

Numerical experiments presented in this paper support the validity of these
observations. In fact, we can now solve a problem up to (n,m)= (7,500)

within a practical amount of time.
When the number of vertices is not very large, algorithms based on ver-

tex enumeration may be better than the branch-and-bound algorithm. In
fact, the polytopes X1 in our experiments tend to have much more vertices
than those generated randomly. So, it is fair to say that our algorithms will
have advantage when polytope has very large number of vertices.

Computation time can be reduced to about one fifth if we implement the
algorithm in a more elaborate way. Unfortunately, it would be very difficult to
solve problem when n is over 10 in a deterministic and exact way as observed
in a number of computational studies on branch and bound algorithm for
global optimization problem with low rank nonconvex structures [10].
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